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Abstract

The unified Krylov–Bogoliubov-Mitropolskii (KBM) method is extended for obtaining the transient
response of an n-th order (nX2) non-linear system with slowly varying coefficients. The method is a
generalization of KBM method and covers all the three cases when the eigenvalues of the unperturbed
equation are real, complex conjugate, or purely imaginary. It is shown that by suitable substitution for the
eigenvalues in the general result that the solution corresponding to each of the three cases can be obtained.
The method is illustrated by examples.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

By means of an extension of the unified Krylov–Bogoliubov–Mitropolskii (KBM) [1–5]
method, the perturbation solution of an nth order (nX2) weakly non-linear system with slowly
varying coefficients is found. The method is a generalization of extended (by Popov [4]) KBM
[1–3] method and covers under-damped and over-damped systems. Shamsul Alam [6] extended
the unified method to the critically damped non-linear system. Bojadziev and Edward [7] studied
some under-damped and over-damped systems with slowly varying coefficients.
Some authors extended this method to higher order non-linear systems. Mulholland [8],

Osiniskii [9] and Bojadziev [10] investigated third order oscillations. Sattar [11] studied a third
order over-damped system. Shamsul and Sattar [12,13] extended the unified method to third-order
systems. An n-dimensional biological system was studied by Pavilidis [14]. Recently, Shamsul
Alam [15] has extended the unified method to an nth order non-linear system.
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In this paper, the unified KBM method is further extended to an nth order non-linear system
with slowly varying coefficients. The method covers under-damped (both small and significant
damping) and over-damped systems. Thus the method is independent of whether the unperturbed
system has n eigenvalues real, or complex conjugate, or pure imaginary. The method is also
independent of the order of the system. The approach of this method is simple and a changed
form of standard KBM method. However, the new solution can be brought to formal KBM
solution by suitable substitutions.

2. The method

Consider a weakly non-linear system governed by an nth order differential equation

xðnÞ þ c1ðtÞxðn�1Þ þ?þ cnðtÞx ¼ ef ðx; ’x;y; xðn�1Þ; tÞ; ð1Þ

where xðiÞ; i ¼ n; n � 1;y represents ith derivative, e a small parameter, t ¼ et slowly varying
time, cjðtÞX0; j ¼ 1; 2;y; n and f a non-linear function. The coefficients in Eq. (1) are slowly
varying in that their time derivatives are proportional to e [3].
Setting e ¼ 0; t ¼ t0 ¼ Const. in Eq. (1), we obtain the unperturbed solution of the equation.

Let Eq. (1) has n eigenvalues ljðt0Þ; j ¼ 1; 2;y; n; where ljðt0Þ are constant, but when ea0; ljðtÞ
slowly vary with time. The unperturbed solution of Eq. (1) becomes

xðt; 0Þ ¼
Xn

j¼1

aj;0e
ljðt0Þt; ð2Þ

where aj;0; j ¼ 1; 2y; n are arbitrary constants.
Now we seek a solution of Eq. (1) that reduces to Eq. (2) as a limit e-0: Following the KBM

method [1–3], we look for a solution

xðt; eÞ ¼
Xn

j¼1

ajðtÞ þ e u1ða1; a2;y; an; tÞ þ e2u2ða1; a2;y; an; tÞ þ e3? ð3Þ

in which each aj satisfies a first order differential equation:

’aj ¼ �ljðtÞ aj þ eAjða1; a2;y; an; tÞ þ e2Bjða1; a2;y; an; tÞ þ e3?: ð4Þ

Confining only to the first few terms, 1; 2; y; m; in the series expansions of Eqs. (3) and (4),
we evaluate the functions u1; u2;y and Aj; Bj;y; j ¼ 1; 2;y; n such that ajðtÞ appearing in
Eqs. (3) and (4) satisfy the given differential equation (1) with an accuracy of emþ1 [15].
Theoretically, the solution can be obtained up to the accuracy of any order of approximation.
However, owing to the rapidly growing algebraic complexity for the derivation of the formulae,
the solution is in general confined to a low order, usually the first [5]. In order to determine these
functions it is assumed that the functions u1; u2;y do not contain the fundamental terms [5–7,12]
which are included in the series expansion (3) at order e0:
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Differentiating xðt; eÞ n-times with respect to t, substituting derivatives xðnÞ;xðn�1Þ;y; ’x and x in
the original equation (1) and equating the coefficients of e, we obtain

Yn

j¼1

ðO� ljÞu1 þ
Xn

j¼1

Yn

k¼1;kaj

ðO� lkÞ

 !
Aj þ

Xn

j¼1

1
2

Xn�2

k¼0

ðn � kÞðn � k � 1Þckl
n�k�2
j

 !
l0jaj

¼ f ð0Þða1; a2;y; an; tÞ; ð5Þ

where O ¼
Pn

j¼1 ljajð@=@ajÞ; l
0
j ¼ dlj=dt; j ¼ 1; 2;y; n; f ð0Þ ¼ f ðx0; ’x0;y;xðn�1Þ

0 Þ; x0 ¼
Pn

j¼1 ajðtÞ:
We have already assumed that u1 does not contain fundamental terms and for this reason the

solution will be free from secular terms, namely t cos t; t sin t and te�t [2,10]. Under these
restrictions, we are able to solve Eq. (5) by separating this into n þ 1 individual equations for the
unknown functions u1 and Aj; j ¼ 1; 2;y; n: In general, the functions f ð0Þ and u1 are expanded in
Taylor’s series

f ð0Þ ¼
XN;N;?;N

m1¼0;m2¼0;?;mn¼0

Fm1;m2;?;mn
ðtÞam1

1 am2

2 ?amn
n ð6Þ

and

u1 ¼
XN;N;y;N

m1¼0;m2¼0;y;mn¼0

Um1;m2;y;mn
ðtÞam1

1 am2

2 ?amn
n : ð7Þ

First of all, we may consider the situation when n is an even number and eigenvalues of the
unperturbed equation are �mlðt0Þ7olðt0Þ; l ¼ 1; 2;y; n=2: For the above-imposed restrictions, it
assures that u1 must exclude all terms with am2l�1

2l�1 am2l

2l ; l ¼ 1; 2;y; n=2 of f ð0Þ where m2l�1 � m2l ¼
71; since as a linear approximation (i.e., e-0) am2l�1

2l�1 am2l

2l becomes eol t when m2l�1 � m2l ¼ 1 or
e�ol t when m2l�1 � m2l ¼ �1: It is noted that e7ol t; l ¼ 1; 2;y; n=2 are known as fundamental
terms [5–7,12]. Naturally these are included in equations of Aj; j ¼ 1; 2;y; n=2: Moreover, it is
restricted (by Krylov et al. [1,2]) that the functions Aj; j ¼ 1; 2;y; n are independent of
fundamental terms. Hence for an even value of n, we obtain the following equations for u1 and
Aj; j ¼ 1; 2;y; n:

Yn

j¼1

ðO� ljÞu1 ¼
XN;N;y;N

m1¼0;m2¼0;y; mn¼0

Fm1;m2;y;mn
ðtÞam1

1 am2

2 ?amn
n ; m2l�1 � m2la71; ð8Þ

Yn

k¼1;ka2l�1

ðO� lkÞ

 !
A2l�1 þ 1

2

Xn�2

k¼0

ðn � kÞðn � k � 1Þckl
2l�k�2
2l�1

 !
l02l�1a2l�1

¼
XN;N

m2l�1¼0;m2l¼0

F0;0;?;m2l�1;m2l ;y;0a
m2l�1

2l�1 am2l

2l ;m2l�1 � m2l ¼ 1; ð9Þ
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and

Yn

k¼1;ka2l

ðO� lkÞ

 !
A2l þ 1

2

Xn�2

k¼0

ðn � kÞðn � k � 1Þckl
2l�k�2
2l

 !
l02la2l

¼
XN;N

m2l�1¼0;m2l¼0

F0;0;y;m2l�1;m2l ;y;0a
m2l�1

2l�1 am2l

2l ; m2l�1 � m2l ¼ �1: ð10Þ

It is very easy to determine the particular solutions of Eqs. (8)–(10). To do this we only replace
operator O by

Pn
j¼1 mjlj; since we know Oðam1

1 am2

2 yamn
n Þ ¼

Pn
j¼1 mjljða

m1

1 am2

2 ?amn
n Þ: Thus the

determination of first order solution (improved approximation) of (1) is clear for an even value of
n. Now we shall consider the situation when n is odd. In this case, the eigenvalues of the
unperturbed equation can be written as �m0ðt0Þ; �mlðt0Þ7olðt0Þ; l ¼ 1; 2;y; ðn � 1Þ=2: It is clear
that the above three equations (8)–(10) are still valid (here, the subscript of a, A and l will be
changed only, since we will start from a2 instead of a1) and one equation for A1 will be added. To
determine the equation of A1; we shall follow the assumption of Bojadziev [10] that u1 does
contain a term te�t (as limits ml-0 for all l) and obtain the following equation:

Yn

k¼2

ðO� lkÞ

 !
A1 þ 1

2

Xn�2

k¼0

ðn � kÞðn � k � 1Þckl
2l�k�2
1

 !
l01a1

¼
XN;N

m1;m2l¼0;m2lþ1¼0

Fm1;0;y;m2l ;m2lþ1;y;0 am1

1 am2l

2l a
m2lþ1

2lþ1 ;m2l ¼ m2lþ1: ð11Þ

Then the equations for u1 and Aj; j ¼ 2; 3; ?; n are written as

Yn

j¼1

ðO� ljÞu1 ¼
XN;N;y;N

m1¼0;m2¼0;y;mn¼0

Fm1;m2;y;mn
ðtÞam1

1 am2

2 ?amn
n ; m2l � m2lþ1a0;71; ð12Þ

Yn

k¼1;ka2l

ðO� lkÞ

 !
A2l þ 1

2

Xn�2

k¼0

ðn � kÞðn � k � 1Þckl
2l�k�2
2l

 !
l02la2l

¼
XN;N

m2l¼0;m2lþ1¼0

F0;0;y;m2l ;m2lþ1;y;0 am2l

2l a
m2lþ1

2lþ1 ; m2l � m2lþ1 ¼ 1; ð13Þ

and

Yn

k¼1;ka2lþ1

ðO� lkÞ

 !
A2lþ1 þ 1

2

Xn�2

k¼0

ðn � kÞðn � k � 1Þckl
2l�k�2
2lþ1

 !
l02lþ1a2lþ1

¼
XN;N

m2l¼0;m2lþ1¼0

F0;0;y;m2l ;m2lþ1;y;0 am2l

2l a
m2lþ1

2lþ1 ; m2l � m2lþ1 ¼ �1: ð14Þ
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Eqs. (11)–(14) can be solved using a similar procedure discussed above, so that the
determination of the first order solution of Eq. (1) is also clear for an odd value of n.
We have already mentioned that solution Eq. (3) is not a standard form of KBM method; we

shall be able to transform (3) to the exact form of KBM solution by substitutions

a2l�1 ¼ 1
2ble

jl ;

a2l ¼ 71
2
ble

�jl ; l ¼ 1; 2;y; n=2; ð15Þ

or

a1 ¼ b0;

a2l ¼ 1
2ble

jl ;

a2lþ1 ¼ 71
2
ble

�jl ; l ¼ 1; 2;y; ðn � 1Þ=2: ð16Þ

3. Example

3.1. Second order nonlinear systems

To illustrate the method, we first consider the non-oscillation and oscillations of a pendulum
with variable length. The differential equation of the motion is

d

dt
ml2ðtÞ ’x
� �

þ 2d
d

dt
lðtÞxð Þ þ mglðtÞ sinx ¼ 0; ð17Þ

where m is the mass, x the angle of deviation of the pendulum from the vertical, 2d the coefficient
of damping, g the acceleration of gravity, lðtÞ the length of the pendulum varying slowly with
time. For small oscillations we can use the first of the two terms of the development of sinx: Then
Eq. (17) can be written as

.x þ 2kðtÞ ’x þ n2ðtÞx ¼ �eðtÞrðtÞ½ ’x þ kðtÞx� þ e1ðtÞx3; ð18Þ

where

kðtÞ ¼ d=mlðtÞ; rðtÞ ¼ 2l0ðtÞ=lðtÞ; n2ðtÞ ¼ g=lðtÞ; e1ðtÞ ¼ g=6lðtÞ ¼ 1
6
n2ðtÞ; l0 ¼ dlðtÞ=dt; t ¼ et:

Here n ¼ 2; j ¼ 1; 2; eigenvalues are l1ðtÞ and l2ðtÞ; relations between eigenvalues and
coefficients l1 þ l2 ¼ �2k; l1l2 ¼ n2 or two eigenvalues are l1;2 ¼ �k7o;o2 ¼ k2 � n2: In this
case x0 ¼ a1 þ a2; f ð0Þ ¼ �1

2rðl1 � l2Þða1 � a2Þ þ e�1e1ða3
1 þ e13a2

1a2 þ 3a1a
2
2 þ a32Þ and O 	

l1a1ð@=@a1Þ þ l2a2ð@=@a2Þ: Now substituting the values of n, j and f ð0Þ in the general equation
(5) and following the assumption (discussed in Section 2), we obtain Eqs. (8)–(10) as

ðO� l1ÞðO� l2Þu1 ¼ e�1e1ða3
1 þ a32Þ; ð19Þ

ðO� l2ÞA1 þ l01a1 ¼ �1
2
rðl1 � l2Þa1 þ 3e�1e1a21a2; ð20Þ

and

ðO� l1ÞA2 þ l02a2 ¼ �1
2
rðl1 � l2Þa2 þ 3e�1e1a1a2

2: ð21Þ
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We have discussed in Section 2 that the particular solutions of Eqs. (19)–(21) would be found by
simply replacing O by m1l1 þ l2m2: To illustrate this matter, let us consider the second term with
a21a2 on the right-hand side of Eq. (20). Here, we only replace O by 2l1 þ l2 or O� l2 by 2l1:
Similarly, for the first term with a1 (included left sided term l01a1), O should be replaced by l1 or
O� l2 by l1 � l2: Therefore, the particular solutions of Eq. (20) is

A1 ¼ �
l01a1

l1 � l2
� 1

2
ra1 þ

3e�1e1a21a2
2l1

: ð22Þ

In a similar procedure, we can obtain the particular solutions of Eqs. (21) and (19) as

A2 ¼
l02a2

l1 � l2
� 1

2
ra2 þ

3e�1e1a1a
2
2

2l2
; ð23Þ

and

u1 ¼ e�1e1
a3
1

2l1ð3l1 � l2Þ
þ

a32
2l2ð3l2 � l1Þ

� 	
: ð24Þ

Substituting the values of A1 and A2 from Eqs. (22) and (23) into Eq. (4), we obtain

’a1 ¼ �l1a1 þ e �
l01a1

l1 � l1
�

l0a1

l

� 	
þ

3e1a2
1a2

2l1
;

’a2 ¼ �� l2a2 þ e
l02a2

l1 � l1
�

l0a2

l

� 	
þ

3e1a1a22
2l2

: ð25Þ

Now we have to solve Eq. (25) for a1 and a2; but it is hard to say that Eq. (25) has an exact
solution or not. Most of the cases (i.e., under-damped or over-damped or critically damped), we
are unable to find an exact solution of Eq. (4) when a non-linear system posses strong linear
damping force(s) [6,7,10,13,15–17]. In the case of an over-damped system, Murty and
Deekshatulu [16] replace the terms with small parameter e, by their respective unperturbed value
(i.e., ajðtÞ by aj;0e

ljðt0Þt), since x together with all ajðtÞ die out quickly. Within this time interval, the
difference between ajðtÞ and aj;0e

ljðt0Þt occurs in an order of e only. But, in the case of oscillations
with small damping or without damping, this is definitely wrong. In this case, x and ajðtÞ die out
slowly and the difference of ajðtÞ and aj;0e

ljðt0Þt increases with t and after a long time the difference
occurs by more than an order of e. However, for the system with strong damping effects, this
assumption is also correct (see Ref. [17] for details). Thus in the case of an over-damped system,
we obtain an approximate solution of (25) as

a1D
a0
1l0

l
exp �

R t

0 l1dt �
R l1ðtÞ
0

dl1
l1 � l1

� 	
þ

3e1a1;0a2ðeðl1þl2Þ � 1Þ
2l1ðl1 þ l2Þ

;

a2D
a02l0

l
exp �

R t

0 l2dt þ
R l2ðtÞ
0

dl2
l1 � l1

� 	
þ

3e1a1;0a2ðeðl1þl2Þ � 1Þ
2l2ðl1 þ l2Þ

ð26Þ

Therefore, we obtain a first order solution of Eq. (18) for all real values of l1 and l2

xðt; eÞ ¼ a1 þ a2 þ eu1; ð27Þ

where a1 and a2 are given by Eq. (26) and u1 by Eq. (24).
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We can find Bojadziev and Edwards’ over-damped solutions from Eq. (27) together with
Eqs. (25) and (24) under the substitution a1 ¼ 1

2ae
j and a2 ¼ 71

2ae
�j (a and j are known as

amplitude and phase), which transform (25) to

’a ¼ �ka þ e �
o0a

2o
�

l0a

l
�

3ka3

8n2

� 	
;

’j ¼ oþ e
k0a

2o
�

3oa2

8n2

� 	
: ð28Þ

It is clear that the variational equation (28) is an exact form of KBM solution (see also
Appendix A). Now, substituting the values of k, r, n and e1 into Eq. (28), we obtain

’a ¼ �
da

ml
þ e

d2l0=4m2l2

d2=ml � g
�

3l0

4l

 !
a �

da3

16ml
;

’j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

m2l2
�

g

l

s

 1�

edl0=ml2

2 d2=m2l2 � g=l
� �� a2

16

 !
: ð29Þ

We are able to determine an appgroximate solution of Eq. (29) when l changes linearly with
time, i.e., l ¼ l0 þ el1t: Substituting this value of l, l�1Dl�1

0 � el1l�2
0 t; into Eq. (29) and simplifying,

we obtain an approximate solution of Eq. (29) (in order of e [7]) as

a ¼

a0exp �dt=ml0 þ e
d2l1=4m2l20

d2=ml0 � g
� 3l1=4l

 !
t þ del1t2=2ml20

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

16
a20 1� e�2dt=ml0
� �q ;

j ¼ j0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

m2l20
�

g

l0

s
t �

R t

0 a2ðtÞ dt

16

 !
�

edl1t=ml20

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=m2l20 � g=l0

q
0
B@

1
CAþ

el1t2 d2=m2l20 � g=2l0
� �
d2=m2l20 � g=l0

: ð30Þ

This result is similar to that obtained by Bojadziev and Edwards [7], but not identical.
Bojadziev and Edwards considered equation ml2ðtÞ.yþ 2dlðtÞ’yþ mglðtÞ siny ¼ 0 instead of
Eq. (17) [7]. However, actual pendulum equation with varying length is Eq. (17) [18]. The above
solution is valid even when the length of the pendulum is considered constant. Moreover, this
solution is used as an under-damped. First, consider the case of constant length, i.e., l1 ¼ 0: We
can take a limit l1-0 and then Eq. (30) becomes

a ¼
a0e

�dt=ml0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

16
a2
0 1� e�2dt=ml0
� �q ;

j ¼ j0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

m2l20
�

g

l0

s
t þ

m

2d
ln 1þ 1

16
a20 1� e�2dt=ml0
� �� �� �

: ð31Þ

Solution (31) is identical to Murty’s solution [5], who first presented the unified formula for
solving second order over-damped and under-damped systems. However, for an under-damped
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system, we know the inequality, d2=m2l20og=l0: Therefore, we should replace j and j0 respectively
by ij and ij0 to obtain the amplitude and phase (in real form) of an under-damped solution.
Thus under the transformations a1 ¼ 1

2
ej; a2 ¼ 1

2
e7j; we obtain two solutions of Eq. (18):

x ¼ a coshjþ
e1a3 ðk2 þ 2o2Þ cosh3jþ 3ko sinh3j

� �
16n2ðk2 � 4o2Þ

; ð32Þ

and

x ¼ a sinhjþ
e1a3 3ko cosh3jþ ðk2 þ 2o2Þ sinh3j

� �
16n2ðk2 � 4o2Þ

; ð33Þ

where a and j (whether real or imaginary) are given by Eq. (30), and k, o, n etc. are defined
above. It is obvious that both solutions represent an under-damped system when j and o are
imaginary (however, they have only a phase difference). Therefore, we may use one solution
arbitrarily for different initial conditions. On the other hand, we have to use one of these solutions
(either Eq. (32) or Eq. (33)) for a given set of initial conditions, when the system is an over-
damped (see Ref. [5] or Ref. [7] or Ref. [12] for details). Thus it is better to use Eq. (27) as an over-
damped solution instead of Eq. (32) or Eq. (33), since we can use Eq. (27) arbitrarily for different
initial conditions.
Now we consider a special case of an under-damped system when we may neglect the terms with

d2 and ed of Eq. (29), so that we have

’a ¼ �
da

ml
�

3el0a
4l

�
da3

16ml
;

’j ¼
ffiffiffiffiffiffiffi
�

g

l

r

 1�

a2

16

� 	
:

ð34Þ

The solution of Eq. (34) is

aðtÞ ¼
a0 l0=l
� �d=eml1þ3=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ FðtÞ
p ; FðtÞ ¼

d l
�ð2d=eml1Þ�ð3=2Þ
0 � l�ð2d=eml1Þ�ð3=2Þ

� �
16dþ 12mel1

;

j ¼ j0 þ
Z t

0

ffiffiffiffiffiffiffi
�

g

l

r

 1�

a2ðtÞ
16

� 	
dt: ð35Þ

It is obvious that the change of F(t) is small. We neglect this term when d ¼ OðeÞ: Thus for a
small damping effect, Eq. (35) may be written in the simple form

aðtÞ ¼ a0
l0

l

� 	ðd=eml1Þþð3=4Þ

;j ¼ j0 þ i

Z t

0

ffiffiffi
g

l

r

 1�

a2ðtÞ
16

� 	
dt: ð36Þ

Therefore, an under-damped solution of a pendulum, whose length is changing linearly with
time, is

xðt; eÞ ¼ aðtÞcosc�
1

192
a3ðtÞcos3c; c ¼ c0 þ

Z t

0

ffiffiffi
g

l

r

 1�

a2ðtÞ
16

� 	
dt; ð37Þ
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where a is given by Eq. (36). This solution is similar to that obtained in Ref. [3] (see also Ref. [18]).

If l is constant, Eq. (37) reduces to xðt; eÞ ¼ a0 cosc� 1
192

a3
0cos3c; c ¼ c0 þ

ffiffiffiffiffiffiffiffiffi
gl�1

0

q
ð1� 1

16
a20Þ: This

solution is identical to that obtained by Bogoliubov and Mitroposkii [2] (see also Ref. [5]).

3.2. Third-order nonlinear systems

Let us consider a third order non-linear differential equation

.’x þ k1ðtÞ .x þ k2ðtÞ ’x þ k3ðtÞx ¼ e x3: ð38Þ

Here n ¼ 3; j ¼ 1; 2; 3 and eigenvalues are l1; l2 and l2; x0 ¼ a1 þ a2 þ a3 and the function
f ð0Þ ¼ a31 þ 3a2

1a2 þ 3a2
1a3 þ 3a1a

2
2 þ 3a1a

2
3 þ 6a1a2a3 þ a3

2 þ 3a22a3 þ 3a2a
2
3 þ a3

3: Substituting the
values of n, j and f ð0Þ in Eq. (5) and following assumptions discussed in Section 2 (for an odd
value of n) and similar steps as presented in Section 3.1, we obtain four equations for A1;A2;A3

and u1 whose solutions are, respectively,

A1 ¼ �
ð2l1 � l2 � l3Þl

0
1a1

ðl1 � l2Þðl1 � l3Þ
þ

a31
ð3l1 � l2Þð3l1 � l3Þ

þ
6a1a2a3

ðl1 þ l2Þðl1 þ l3Þ
;

A2 ¼ �
ð2l2 � l1 � l3Þl

0
2a2

ðl2 � l1Þðl2 � l3Þ
þ

3a2
1a2

ðl1 þ l2Þð2l1 þ l2 � l3Þ
þ

3a2
2a3

2l2ð2l2 þ l3 � l1Þ
;

A3 ¼ �
ð2l3 � l1 � l2Þl

0
3a3

ðl3 � l1Þðl3 � l2Þ
þ

3a2
1a3

ðl1 þ l3Þð2l1 � l2 þ l3Þ
þ

3a2a
2
3

2l3ð2l3 þ l2 � l1Þ
; ð39Þ

and

u1 ¼
3a1a

2
2

2l2ðl1 þ l2Þðl1 þ 2l2 � l3Þ
þ

3a1a
2
3

2l3ðl1 þ l3Þðl1 � l2 þ 2l3Þ

þ
a32

2l2ð3l2 � l1Þð3l2 � l3Þ
þ

a3
3

2l3ð3l3 � l1Þð3l3 � l2Þ
: ð40Þ

Substituting the values of A1; A2 and A3 from Eq. (39) into Eq. (4), we obtain

’a1 ¼ �l1a1 þ e �
ð2l1 � l2 � l3Þl

0
1a1

ðl1 � l2Þðl1 � l3Þ
þ

a31
ð3l1 � l2Þð3l1 � l3Þ

þ
6a1a2a3

ðl1 þ l2Þðl1 þ l3Þ

� 	
;

’a2 ¼ �l2a2 þ e �
ð2l2 � l1 � l3Þl

0
2a2

ðl2 � l1Þðl2 � l3Þ
þ

3a21a2

ðl1 þ l2Þð2l1 þ l2 � l3Þ
þ

3a2
2a3

2l2ð2l2 þ l3 � l1Þ

� 	
;

’a3 ¼ �l3a3 þ e �
ð2l3 � l1 � l2Þl

0
3a3

ðl3 � l1Þðl3 � l2Þ
þ

3a21a3

ðl1 þ l3Þð2l1 � l2 þ l3Þ
þ

3a2a
2
3

2l3ð2l3 þ l2 � l1Þ

� 	
: ð41Þ

For a damped solution of Eq. (38), we may substitute l1ðtÞ ¼ �lðtÞ; l1;2ðtÞ ¼ �mðtÞ7ioðtÞ and
a1 ¼ a; a2 ¼ 1

2
beij; a3 ¼ 1

2
be�ij into Eqs. (41) and (40) and then simplifying them, we obtain

’a ¼ �lðtÞa þ eðl0a þ l1a
3 þ l2ab2Þ;

’b ¼ �mðtÞb þ eðm0b þ m1a
2b þ m2b

3Þ;

’j ¼ oðtÞ þ eðn0 þ n1a
2 þ n2b

2Þ: ð42Þ
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and

u1 ¼ ab2 c2cos2jþ d2sin2jð Þ þ b3 c3cos3jþ d3sin3jð Þ; ð43Þ

where

l0 ¼
2ðl� mÞl0

ðl� mÞ2 þ o2
; l1 ¼

1

ð3l� mÞ2 þ o2
; l2 ¼

3

2ððlþ mÞ2 þ o2Þ
;

m0 ¼
2ðl� mÞm0o� ððl� mÞ2 þ 3o2Þo0

2oððl� mÞ2 þ o2Þ
; n0 ¼ �

ððl� mÞ2 þ 3o2Þm0 þ 2ðl� mÞoo0

2oððl� mÞ2 þ o2Þ
;

m1 ¼
3ðl2 þ lm� o2Þ

2ðl2 þ o2Þ ððlþ mÞ2 þ o2Þ
; n1 ¼

3ð2lþ mÞo

2ðl2 þ o2Þ ððlþ mÞ2 þ o2Þ
;

m2 ¼
3oðmð�lþ 3 mÞ � o2Þ

8ðm2 þ o2Þ ððl� 3mÞ2 þ o2Þ
; n2 ¼

3oð�lþ 4 mÞ

8ðm2 þ o2Þ ððl� 3mÞ2 þ o2Þ
; ð44Þ

and

c2 ¼
3ð�mðlþ mÞ2 þ ð4lþ 7mÞo2Þ

4ðm2 þ o2Þ ððlþ mÞ2 þ o2Þ ððlþ mÞ2 þ 9o2Þ
;

d2 ¼
3oððlþ mÞðlþ 5mÞ � 3o2Þ

4ðm2 þ o2Þ ððlþ mÞ2 þ o2Þ ððlþ mÞ2 þ 9o2Þ
;

c3 ¼
m2ðl� 3mÞ þ ð�2lþ 15mÞo2

16ðm2 þ o2Þ ðm2 þ 4o2Þ ððl� 3mÞ2 þ 9o2Þ
;

d3 ¼
�3oðmðl� 3mÞ þ 2o2Þ

16ðm2 þ o2Þ ðm2 þ 4o2Þ ððl� 3mÞ2 þ 9o2Þ
: ð45Þ

Thus the first order solution of Eq. (38) is

xðt; eÞ ¼ a þ bcosjþ eu1; ð46Þ

where a, b and j are solution of Eq. (42) and u1 is given by Eq. (43). In general, Eqs. (42) are
solved by a numerical procedure [10,12,13]. In this case, the perturbation method facilitates only
the numerical method. The variables a, b and j change slowly with time. So, it requires the
numerical calculation of a few number of points. Contrary, a direct attempt to solve the Eq. (38)
dealing with harmonic terms in solution (46), namely b cos j; requires the numerical calculation
of a great number of points. Often one is not interested in only the oscillating processes itself, i.e.,
finding the x in terms of t, but mainly in the behavior of the amplitudes a, b and the phase j,
which as t increases characterize the oscillating processes [10].

4. General discussion of the results

The core of this study is to find a simple and unified method for solving nth order ordinary
differential equations with slowly varying coefficients. The method was originally developed for
obtaining the periodic solutions of second order non-linear systems by Kryolv and Bogoliubov [1]
and later amplified and justified by Bogoliubov and Mitroploskii [2]. Then the method was
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extended to a strong damped oscillatory system by Popov [4]. Murty et al. [19] used Popov’s
method to obtain an over-damped solution of a second order non-linear differential equation
and that was the basis of unified theory of Murty [5]. Most probably, Osiniskii [9] first studied
a third order non-linear mechanical elastic system with internal friction and relaxation (by
extended KBM method). However, Bojadziev [7] modified his solution. Mulholand [8] found
only oscillatory part of a third order non-linear differential equation, .’x þ .x þ ’x þ x ¼
eð1� x2 � ’x2 � .x2Þð .x þ ’xÞ; by Kryolv and Bogoliubov,s method [1]. It is noted that most of the
cases, first order solution (yet not improved version, i.e., u1 is not considered in the solution) was
found for the third order systems, since it was a laborious task to determine u1:However, Pavilidis
extended this method to an n-dimensional biological system. Then many authors (e.g., Bojadziev
[20,21], Bojadziev and Chan [22], Dutt, Ghosh and Karmaker [23], Lin and Khan [24]) studied
some biological, biomedical and biochemical systems. From the above references it is clear that
KBM method is being used not only in mechanical system or electric circuit theory, but also in a
wide variety of several branches of sciences and engineering. Nowadays, the method is not limited
to second order problems, but also useful in third order or more than third order nonlinear
systems.
The method (concerned with this paper) is not an exact form of unified KBM method. The new

form has been chosen to remove some difficulties of the formal method. We have already
discussed in Section 3.1 that two solutions are needed for a second order over-damped system
(depending on a given set of initial conditions, i.e., a1 ¼ 1

2
aej; a2 ¼ 1

2
e�j is chosen when both a1;0

and a2;0 are positive while a1 ¼ 1
2
aej; a2 ¼ �1

2
e�j is chosen when a1;0 is positive and a2;0 is negative)

in accordance with the standard form of unified KBM method (see Appendix A). In this case, our
solution (27) can be used arbitrarily for different initial conditions. Similarly, two solutions are
needed for a third order over-damped system (see Ref. [12] for details). More difficulties arise
when a fourth order or fifth order system poses all real roots. In these cases four different
solutions are needed for different set of initial conditions. Thus, the standard form of unified
method is a cumbersome procedure to solve initial value problems (over-damped).
There is another demerit of the present form of extended KBM method. We have to solve two

simultaneous differential equations for amplitude and phase, and a partial differential equation of
u1 involving two independent variables, amplitude and phase (see Appendix A). Increasing with
the order of differential equations a set of simultaneous equations appeared. In these cases our
new method is easier than the former. On the other hand, we are able to solve all the equations of
Aj; j ¼ 1; 2;y; n including u1 by a unified and simple formula. Moreover, for an even or odd value
of n, the procedure is also unified. The disadvantage of this method is that we should transform
the solution by a substitution formula when the system is under-damped. However, this method is
yet easier than extended form (by Popov [4]) of KBM method.

5. Conclusion

A general formula is presented by the unified KBM method [1–5] for obtaining the transients
response of non-linear systems governed by an nth order ordinary differential system with a small
non-linearity. The solutions for oscillatory, damped oscillatory and non-oscillatory cases can be
derived from a single equation (5). Thus there is no longer any need to treat three cases separately.
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Moreover, the method is also independent of the order of the differential equation. The solution
reduces to that obtained by Shamsul Alam [15] previous method when the coefficients become
constant.
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Appendix A. Method of Bojadziev and Edwards [7] and other solutions obtained in Refs.[2]–[5]

When n ¼ 2; Eqs. (8)–(10) of Section 2 take the forms

l1a1
@

@a1
þ l2a2

@

@a2
� l1

� 	
l1a1

@

@a1
þ l2a2

@

@a2
� l2

� 	
u1 ¼

XN;N

m1¼0;m1¼0

Fm1;m2
am1am2 ; ðA:1Þ

where m1 � m2 ¼ 71;

l1a1
@

@a1
þ l2a2

@

@a2
� l1

� 	
A1 þ l01a1 ¼

XN;N

m1¼0;m1¼0

Fm1;m2
am1am2 ; m1 � m2 ¼ 1; ðA:2Þ

and

l1a1
@

@a1
þ l2a2

@

@a2
� l2

� 	
A2 þ l01a1 ¼

XN;N

m1¼0;m1¼0

Fm1;m2
am1am2 ; m1 � m2 ¼ �1: ðA:3Þ

We have already mentioned that our solution can be brought to formal KBM solution under a
transformation:

a1 ¼ 1
2
aej; a2 ¼ 1

2
e�j: ðA:4Þ

For Eq. (A.4), we obtain the following results

a1
@

@a1
¼

1

2
a
@

@a
þ

@

@j

� 	
; a2

@

@a2
¼

1

2
a
@

@a
�

@

@j

� 	
;

or

l1a1
@

@a1
þ l1a1

@

@a1
¼

1

2
ðl1 þ l2Þa

@

@a
þ ðl1 � l2Þ

@

@j

� 	
: ðA:5Þ

Substituting l1 ¼ �kðtÞ þ oðtÞ; l2 ¼ �kðtÞ � oðtÞ into Eq. (A.5), we obtain

l1a1
@

@a1
þ l1a1

@

@a1
¼ �ka

@

@a
þ o

@

@j
: ðA:6Þ

Differentiating a1 and a2 with respect to t and utilizing relations (4), we obtain ’a1 ¼
l1a1 þ eA1 þ e2? ¼ 1

2
ð ’a þ a ’jÞej; ’a2 ¼ l2a2 þ eA2 þ e2? ¼ 1

2
ð ’a � a ’jÞe�j; or,

1
2
ð�k þ oÞaej þ eA1 þ e2? ¼ 1

2
ð ’a þ a ’jÞej;

1
2
ð�k � oÞae�j þ eA2 þ e2? ¼ 1

2
ð ’a � a ’jÞe�j:

ðA:7Þ
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With the help of Eq. (A.6), we can rewrite equations Eqs. (A.2) and (A.3) as

�ka
@

@a
þ o

@

@j
þ k � o

� 	
A1 þ 1

2
ð�k0 þ o0Þaej

¼
XN;N

m1¼0;m1¼0

Fm1;m2
ð1
2
aÞðm1þm2Þej;m1 � m2 ¼ 1; ðA:8Þ

�ka
@

@a
þ o

@

@j
þ k þ o

� 	
A2 þ 1

2
ð�k0 � o0Þae�j

¼
XN;N

m1¼0;m1¼0

Fm1;m2
ð1
2
aÞðm1þm2Þe�j;m1 � m2 ¼ �1; ðA:9Þ

or,

�ka
@

@a
þ o

@

@j
þ k � o

� 	
A1 þ 1

2
ð�k0 þ o0Þaej ¼

XN
r¼1

Fr;r�1ð12aÞ
2r�1ej; ðA:10Þ

�ka
@

@a
þ o

@

@j
þ k þ o

� 	
A2 þ 1

2
ð�k0 � o0Þae�j ¼

XN
r¼1

Fr;r�1ð12aÞ
2r�1e�j: ðA:11Þ

Multiplying Eqs. (A.10) and (A.11) respectively, by e�j and ej; and then rearranging them, we
obtain

2oA1e
�j þ �ka

@

@a
þ o

@

@j
þ k

� 	
ðA1e

�jÞ þ 1
2
ð�k0 þ o0Þa ¼

XN
r¼1

Fr;r�1ð12aÞ
2r�1; ðA:12Þ

�2oA2e
j þ �ka

@

@a
þ o

@

@j
þ k

� 	
ðA2e

jÞ þ 1
2ð�k0 � o0Þa ¼

XN
r¼1

Fr�1;rð12aÞ
2r�1 ðA:13Þ

Adding and subtracting Eqs. (A.12) and (A.13), we obtain

2oðA1e
�j � A2e

jÞ þ �ka
@

@a
þ o

@

@j
þ k

� 	
ðA1e

�j þ A2e
jÞ � k0a

¼
XN
r¼1

ðFr;r�1 þ Fr�1;rÞð12aÞ
2r�1; ðA:14Þ

2oðA1e
�j þ A2e

jÞ þ �ka
@

@a
þ o

@

@j
þ k

� 	
ðA1e

�j � A2e
jÞ þ o0a

¼
XN
r¼1

ðFr;r�1 � Fr�1;rÞð12aÞ
2r�1: ðA:15Þ

Again, multiplying two equations of Eq. (A.7), respectively, by e�j and ej; and then adding and
subtracting, we obtain

’a ¼ �ka þ eðA1e
�j þ A2e

jÞ þ e2?;

a ’j ¼ aoþ eðA1e
�j � A2e

jÞ þ e2?: ðA:16Þ
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It is obvious that the particular solutions of Eqs. (A.14) and (A.15) are independent of j, since
the right-hand sides of these equations contain a only; so that these particular solutions can be
found from more simple equations:

2oðA1e
�j � A2e

jÞ þ �ka
d

da
þ k

� 	
ðA1e

�j þ A2e
jÞ � k0a ¼

XN
r¼1

ðFr;r�1 þ Fr�1;rÞ 1
2
a

� �2r�1
; ðA:17Þ

2oðA1e
�j þ A2e

jÞ þ �ka
d

da
þ k

� 	
ðA1e

�j � A2e
jÞ þ o0a ¼

XN
r¼1

ðFr;r�1 � Fr�1;rÞ 1
2a
� �2r�1

: ðA:18Þ

Now if we replace A1e
�j � A2e

j ¼ *A1ðaÞ and A1e
�j � A2e

j ¼ a *B1ðaÞ (where *A1 and *B1 are
usual notations) Eqs. (A.13)–(A.15) reduce to

’a ¼ �ka þ e *A1ðaÞ þ e2?;

’j ¼ a þ e *B1ðaÞ þ e2?; ðA:19Þ

2o *B1 þ �ka
d

da
þ k

� 	
*A1 � k0a ¼

XN
r¼1

ðFr;r�1 þ Fr�1;rÞ 1
2
a

� �2r�1
; ðA:20Þ

and

2o *A1 þ �ka
d

da
� o

� 	
a *B1 þ o0a ¼

XN
r¼1

ðFr;r�1 � Fr�1;rÞ 1
2
a

� �2r�1
;

or

2o *A1 � ka2
d *B1

da
þ o0a ¼

XN
r¼1

ðFr;r�1 � Fr�1;rÞ 1
2a
� �2r�1

: ðA:21Þ

Eqs. (A.20)–(A.21) can be rewritten as

�
k0a

2
þ

o0a

2
þ

1

2
�ka

d *A1

da
þ k *A1 þ 2oa *B1

� 	
þ
1

2
2o *A1 � ka2

d *B1

da

� 	
¼
XN
r¼1

Fr�1;r
1
2
a

� �2r�1 ðA:22Þ

�
k0a

2
�

o0a

2
þ

1

2
�ka

d *A1

da
þ k *A1 þ 2oa *B1

� 	
�
1

2
2o *A1 � ka2

d *B1

da

� 	
¼
XN
r¼1

Fr�1;r
1
2
a

� �2r�1
: ðA:23Þ

With the help of Eq. (A.6), Eq. (A.1) can be written as

�ka
@

@a
þ

@

@j
� k þ o

� 	
�ka

@

@a
þ

@

@j
� k � o

� 	
u1 ¼

XN
m1;m2¼0;m1�m2a71

Fm1;m2

1
2
a

� �m1þm2eðm1�m2Þj:

ðA:24Þ

or

�ka
@

@a
þ

@

@j

� 	2

u1 þ 2c1 �ka
@

@a
þ

@

@j

� 	
u1 þ c2u1 ¼

XN
m1;m2¼0;m1�m2a71

Fm1;m2

1
2
a

� �m1þm2eðm1�m2Þj:

ðA:25Þ
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Eqs. (A.22)–(A.23) and (A.25) are exact forms of those obtained by Bojadziev and Edwards [7].
If the coefficients are constants i.e., k0 ¼ o0 ¼ 0; these equations are similar to those obtained by
Murty [5]. Equations similar to (A.22),(A.23) and (A.25) would be found if we use
transformations a1 ¼ 1

2
aej; a2 ¼ �1

2
e�j: If we replace o by io; *B1 by i *B1 and substitute k0 ¼ o0 ¼

0 into Eqs. (A.22)–(A.23) and (A.25), they transform to those obtained by Popov [4] while
they transform to those obtained in Ref. [2] when k ¼ k0 ¼ o0 ¼ 0: Again these will be
transformed to those obtained in Ref. [3] if k ¼ OðeÞ and o ¼ oðtÞ: Similar verification can be
made when nX3:
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